	Working in the infer Package Workflow for a Basic Regression

	Obtaining 1000 Permuted Slope Statistics

null_dist <- <NAME OF DATASET> %>%
  specify(response = <NAME OF RESPONSE VARIABLE>, 
          explanatory = <NAME OF EXPLANATORY VARIABLE>) %>% 
  hypothesize(null = “independence”) %>%
  generate(reps = 1000, type = "permute") %>%
  calculate(stat = "slope")

Note: You choose the number of reps. I recommend choosing at least 1000, to get a good idea of the shape of the bootstrap distribution – remember we need to verify it is approximately normal. 


	Plotting the Null Distribution

visualize(null_distribution)

Note: You can add axis labels to this plot! All you need to do is connect the visualize() step to labs() using a + sign.  


		Shading the p-value

visualize(null_distribution)+ 
   shade_p_value(obs_stat = obs_slope, 
                 direction = “two-sided”)

Note: You can add axis labels to this plot! All you need to do is connect the visualize() step to labs() using a + sign.  


	Obtaining a p-value

get_p_value(null_dist, 
            obs_stat = obs_slope,
            direction = “two-sided”)


	Parametric Methods for Obtaining a p-value for Basic Regression

	
my_model <- lm(<NAME OF RESPONSE VARIABLE> ~ <NAME OF EXPLANATORY VARIABLE>, 
               data = <NAME OF DATASET>)

get_regression_table(my_model, 
                     conf.level = 0.95)

Note: If you want a 90% confidence interval (or an alpha of 0.1), you change conf.level to 0.90


	
Working in the infer Package Workflow for a Multiple Regression

	Obtaining the Sample (Observed) Regression Fit

obs_fit <- <NAME OF DATASET> %>%
  specify(<RESPONSE> ~ <EXPLANATORY VARIABLE 1> * <EXPLANATORY VARIABLE 2>) %>% 
  fit()

Note: Within specify(), your syntax looks identical to what you used to fit a model with the lm() function. You use a ~ to separate the response from the explanatory variables. 

Note: In the above code a * separates the two explanatory variables. This would fit an interaction model! If you want to fit an additive model, you would need to use a + sign to separate the variables!


	Obtaining 1000 Permuted Fits

null_dist <- <NAME OF DATASET> %>%
  specify(<RESPONSE> ~ <EXPLANATORY VARIABLE 1> * <EXPLANATORY VARIABLE 2>) %>% 
  hypothesize(null = “independence”) %>%
  generate(reps = 1000, type = "permute") %>%
  fit()

Note: You choose the number of reps. I recommend choosing at least 1000, to get a good idea of the shape of the bootstrap distribution – remember we need to verify it is approximately normal. 


	Plotting the Null Distributions

visualize(data = null_dist)

Note: This will create multiple histograms, one for each variable included in the multiple regression. 

	Shading the p-value

visualize(null_dist)+ 
   shade_p_value(obs_stat = obs_fit, 
                 direction = “two-sided”)


	Obtaining a p-value

get_p_value(null_dist, 
            obs_stat = obs_fit,
            direction = “two-sided”)




	Parametric Methods for Obtaining a p-value for Multiple Regression

	
my_model <- lm(<RESPONSE> ~ <EXPLANATORY VARIABLE 1> * <EXPLANATORY VARIABLE 2>, 
               data = <NAME OF DATASET>)

anova(my_model)

Note: In the above code a * separates the two explanatory variables. This would fit an interaction model! If you want to fit an additive model, you would need to use a + sign to separate the variables!

	Evaluating Conditions of Residuals for Regression

	Distribution of residuals (to evaluate normality condition)

broom::augment(my_model) %>% 
  ggplot(mapping = aes(x = .resid)) +
  geom_histogram() +
  labs(x = "Residual")

Note: In the above code my_model represents the linear model that was fit, this can be either a simple or multiple linear regression!

	Residuals versus fitted values (to evaluate equal variance condition)

broom::augment(my_model) %>% 
  ggplot(mapping = aes(y = .resid, x = `<NAME OF EXPLANATORY VARIABLE>`)) +
  geom_point() + 
  geom_hline(yintercept = 0, color = "red", linewidth = 3) +
  labs(x = "<NAME OF EXPLANATORY VARIABLE>", 
       y = "Residuals")

Note: In the above code my_model represents the linear model that was fit, this can be either a simple or multiple linear regression!




