
Warning
No revisions will be accepted on Lab 10. You can, however, talk with me during class about any questions you have. :)
5-minutes
If you would like to participate
If you would not like to participate
Recall from your statistics classes…
A random variable is a value we don’t know until we take a sample.
The distribution of a random variable tells us its possible values and how likely they are to occur.

Uniform Distribution

Normal Distribution

t-Distribution

Chi-Square Distribution

Binomial Distribution

r is for random sampling.
p is for probability.
x.q is for quantile.
q functions are “backwards” of the p functions.d is for density.
We can generate fake data based on the assumption that a variable follows a certain distribution.
Since there is randomness involved, we will get a different result each time we run the code.
set.seed(435)
fake_data <- tibble(names = charlatan::ch_name(n = 1000),
age = runif(n = 1000, min = 18, max = 29),
mamdani = rbinom(n = 1000, size = 1, prob = 0.75)
) |>
mutate(supports_mamdani = ifelse(mamdani == 1, "yes", "no"))
head(fake_data)# A tibble: 6 × 4
names age mamdani supports_mamdani
<chr> <dbl> <int> <chr>
1 Elbridge Kautzer 24.1 0 no
2 Brandon King 26.0 1 yes
3 Phyllis Thompson 20.8 1 yes
4 Humberto Corwin 28.9 0 no
5 Theresia Koelpin 25.1 0 no
6 Hayden O'Reilly-Johns 28.6 1 yes
Check to see the ages look uniformly distributed.
fake_data |>
ggplot(mapping = aes(x = age,
fill = supports_mamdani)) +
geom_histogram(show.legend = F) +
facet_wrap(~ supports_mamdani,
ncol = 1) +
scale_fill_brewer(palette = "Paired") +
theme_bw() +
labs(x = "Age (years)",
y = "",
subtitle = "Number of Individuals Supportng Prop 50 for Different Ages",)
Is the instrument salesman selling fake instruments?
In this practice activity you and your partner will write a function to simulate the weight of various band instruments, with the goal of identifying whether a particular shipment of instruments has a “reasonable” weight.
This activity will require knowledge of:
None of us have all these abilities. Each of us has some of these abilities.
Suppose x is Normally distributed with mean 5 and standard deviation 2.
We would expect about 15.87% percent of values to be below 3. Let’s see if that is the case!
How many values were below 3?
[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[13] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[25] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
[37] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[49] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[85] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[109] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[133] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
[181] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
[193] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[205] TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[229] FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE
[241] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[265] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[277] FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[301] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
[313] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
[325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[337] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[349] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[397] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[409] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[421] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[433] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[445] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[457] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
[469] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[481] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[493] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[505] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[517] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[553] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[565] TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[577] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[589] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[601] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[637] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[649] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[661] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[685] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[697] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[733] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[757] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[769] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[781] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[817] FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[877] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[889] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[901] TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
[913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[925] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[937] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[961] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[997] FALSE TRUE FALSE FALSE
You and your partner together should address the following questions:
How many simulated shipments had a weight less than or equal to Professor Hill’s shipment?
Do you beleive Professor Hill ordered genuine instruments?

The partner whose birthday is the closest to today starts as the Talker!

The partner whose birthday is the closest to today starts as the Talker!